Research Report ষ্ল

RESEARCH CONCERNING CHARACTERIZATION AND IMPROVEMENT OF THE ELECTROMAGNETIC ENVIRONMENT IN MODERN CARS

Goal of the project

- Assessment of the electromagnetic environment in modern vehicles: technical and legal aspects;
- Assessment and analysis of measuring and testing methods and of equipment involved in Automotive EMC;
- Implementation of novel test and measurement methods in Automotive EMC and improvement of the testing repeatability
- Applications of metamaterials to Automotive EMC.

Short description of the project

This project is component of the complex project *Hybrid Platform* for Communication in Visible Light and Augmented Reality for the Development of Intelligent Systems for Assistance and Active Security of Vehicles, 21PCCDI / 2018.

Project implemented by

Politehnica University Timişoara,

Faculty of Electronics, Communications and Information Technology, Department of Measurements and Optical Electronics

Implementation period

18.05.2018 - 16.11.2020

Main activities

1. Characterization of the electromagnetic environment in vehicles:

- Near field and far field measurement;
- Spectral occupancy measurement.
- 2. Improvement of repeatability of Automotive MC tests
 - Assessment of devices and equipment involved;
 - Interlaboratory testing and comparisons
 - Far-field prediction from near-field measurements data;
 - Prediction of far-field radiation from current measurement.
- 3. Methods of reduction of conducted and radiated emissions;
 - Resonance analysis of systems that fail EMC tests;
 - Applications of metamaterials: filtering, suppressing of cavity oscillations, screening with frequency selective surfaces.

Results

2018

- Documentation concerning assessment of electromagnetic field in modern cars;
- Documentation concerning foreseen electromagnetic environment in electric cars and related EMC aspects;
- Documentation concerning applications of metamaterials in the Automotive EMC field;
- 10 published papers on:
 - Emissions and immunity testing in Automotive EMC (Fig. 1);
 - Interlaboratory comparison of radiated emissions;
 - ALSE chamber validation (Fig. 2);
 - Stripline measurements in Automotive EMC;
 - Near field measurements and applications to emission reduction (Fig. 3);
 - Frequency selective surfaces;
 - Spectrum occupancy measurement in the HF domain;
 - Application of Rasberry Pi.

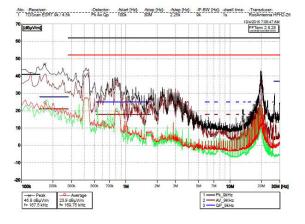


Fig. 1. Results of radiated emission tests on the same DUT using a monopole antenna in two different semi-anechoic chambers.

Research Report ষ্ল

Fig. 2. Testing setup for chamber validation with biconic antenna

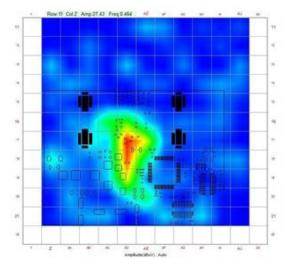


Fig. 3. Near-field scanning

Applicability and transferability of the results

Results obtained in this research might be useful to:

- EMC laboratories, mainly related to Automotive industry;
- EMC professionals;
- EMC research community;
- EMC standards elaboration;
- Legal authorities that regulate spectrum occupancy;
- Professionals working in Automotive design.

Financed through/by

Executive Unit for Financing Higher Education, Research, Development and Innovation - UEFISCDI

Research centre

ICER - Research Institute for Renewable Energy

Research team

Aldo de SABATA Cornel BALINT Septimiu MISCHIE Cora IFTODE Andrei SILAGHI

Contact information

Prof. Aldo DE SABATA, PhD Faculty of Electronics, Communications and Information Technology/ Department of Measurements and Optical Electronics Address: Bd. V. Pârvan, No. 2, Postal Code 300223, Timisoara Phone: (+40) 256 403370 E-mail: aldo.de-sabata@upt.ro Web: http://www.meo.etc.upt.ro/